# Wndsn Sun Calculator

Companion to Wndsn Quadrant Telemeters: Low tech, high utility graphical distance computers from the Wndsn applied science lab.

*By way of using a Wndsn Quadrant to measure local latitude and calculate declination for a given date, a number of values can be derived through further Quadrant computations.*

Knowing the noon altitude of the Sun, we can calculate the solar declination δ and vice versa.

The declination of the Sun is the angle between the Sun's rays and the equatorial plane of the Earth. The declination angle is the same for anywhere on Earth on a given day.

## Input

## Explanation

[Load sample values (JSON) (XML) (CSV).]

- H(φ,δ)
- Sun altitude at noon H from latitude:

`H = (90° − φ) + δ`

- α
_{sr}(φ,δ) - Azimuth α
_{sr}of rising/setting sun:

`cos α`

_{sr}= sin δ / cos φ - t
_{sr}(φ,δ) - Hour angle t
_{sr}of rising/setting sun (from noon):

`cos t`

_{sr}= -tan φ * tan δ - t(h,φ,δ)
- Hour angle t from instantaneous Sun altitude h:

`sin t = (sin h - sin δ * sin φ) / (cos δ * cos φ)`

- α
_{s}(t,φ,δ) - Sun azimuth α
_{s}for a given hour:

`tan α`

_{s}= (sin t / (sin φ * cos t)) - cos φ * tan δ

where H = Sun altitude at noon, h = instantaneous Sun altitude, t = hour angle, φ = latitude, and δ = declination.

## Reference

1 rad = 57.3 deg 6.2832 rad = 360 deg = 6283.2 mil = 21,600 minutes (moa) 0.017453 rad = 1 deg = 17.453 mil = 60 minutes (moa) 0.0573 deg = 1 mil = 3.438 minutes (moa)